3.9 Motion of Wave Packets: Ehrenfest's Theorem

According to Ehrenfest's theorem (1927), the equations of motion of the expectation values of the position and momentum vectors for a wave packet are formally identical to Newton's equations of classical mechanics. That is,

$$
\begin{align*}
& \frac{d}{d t}\langle\mathbf{r}\rangle=\frac{\langle\mathbf{p}\rangle}{m} \tag{3.48}\\
& \frac{d}{d t}\langle\mathbf{p}\rangle=-\langle\nabla V\rangle
\end{align*}
$$

Proof of (6.48) $\frac{d}{d t}\langle\mathbf{r}\rangle=\frac{\langle\mathbf{p}\rangle}{m}$
Let us first consider the expectation value of the x -component of the position vector r . Assuming that the wave function Ψ representing the wave packet is normalized to unity, we have,

$$
\langle x\rangle=\int \Psi^{*}{ }^{*} x \Psi d \mathbf{r}
$$

The time rate of change of $\langle x\rangle$ is

$$
\begin{aligned}
\frac{d}{d t}\langle x\rangle & =\frac{d}{d t} \int \Psi^{*} x \Psi d \mathbf{r} \\
& =\int \Psi^{*} x \frac{\partial \Psi}{\partial t} d \mathbf{r}+\int \frac{\partial \Psi^{*}}{\partial t} x \Psi d \mathbf{r}
\end{aligned}
$$

The right-hand side can be transformed by using the Schrödinger equation and its complex conjugate.
$i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi \quad-i \hbar \frac{\partial \Psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi^{*}+V \Psi^{*}$
We obtain,

$$
\begin{gather*}
\frac{d}{d t}\langle x\rangle=\frac{1}{i \hbar}\left[\int \Psi^{*} x\left(-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi\right) d \mathbf{r}-\int\left(-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi^{*}+V \Psi^{*}\right) x \Psi d \mathbf{r}\right. \\
=\frac{i \hbar}{2 m} \int\left[\Psi^{*} x\left(\nabla^{2} \Psi\right)-\left(\nabla^{2} \Psi^{*}\right) x \Psi\right] d \mathbf{r} \tag{3.50}
\end{gather*}
$$

Let us consider the second part of the integral. Using Green's first identity

Green's first identity: If f and g are scalar functions of position, then

$$
\int_{V}\left[f \nabla^{2} g+(\nabla f) \cdot(\nabla g)\right] d \mathbf{r}=\int_{S} f(\nabla g) \cdot d \mathbf{S}
$$

where V is the volume bounded by the closed surface S. For our case, take $f=x \Psi$ and $g=\Psi^{*}$.

We obtain,

$$
\int\left(\nabla^{2} \Psi^{*}\right) x \Psi d \mathbf{r}=\int_{S} x \Psi\left(\nabla \Psi^{*}\right) \cdot d \mathbf{S}-\int\left(\nabla \Psi^{*}\right) \cdot \boldsymbol{\nabla}(x \Psi) d \mathbf{r}
$$

Since the volume under consideration is the entire space, the surface S in the first integral on the right is at infinity. Hence, this integral is zero because the wave function vanishes at large distances. Therefor,

$$
\int\left(\nabla^{2} \Psi^{*}\right) x \Psi d \mathbf{r}=-\int\left(\nabla \Psi^{*}\right) \cdot \nabla(x \Psi) d \mathbf{r}
$$

Using Green's first identity again, we get

$$
-\int\left(\nabla \Psi^{*}\right) \cdot \nabla(x \Psi) d \mathbf{r}=-\int_{S} \Psi * \nabla(x \Psi) \cdot d \mathbf{S}+\int \Psi^{*} \nabla^{2}(x \Psi) d \mathbf{r}
$$

The surface integral again vanishes. Thus,

$$
\int\left(\nabla^{2} \Psi^{*}\right) x \Psi d \mathbf{r}=\int \Psi^{*} \nabla^{2}(x \Psi) d \mathbf{r}
$$

Substituting this back into (3.50), we obtain

$$
\frac{d}{d t}\langle x\rangle=\frac{i \hbar}{2 m} \int \Psi *\left[x \nabla^{2} \Psi-\nabla^{2}(x \Psi)\right] d \mathbf{r}
$$

It can be easily shown that

$$
\nabla^{2}(x \Psi)=x \nabla^{2} \Psi+2 \frac{\partial \Psi}{\partial x}
$$

Therefore,

$$
\begin{aligned}
\frac{d}{d t}\langle x\rangle & =-\frac{i \hbar}{m} \int \Psi^{*} \frac{\partial \Psi}{\partial x} d \mathbf{r} \\
& =\frac{1}{m} \int \Psi^{*}\left(-i \hbar \frac{\partial}{\partial x}\right) \Psi d \mathbf{r} \\
& =\frac{\left\langle p_{x}\right\rangle}{m}
\end{aligned}
$$

Similarly, we can prove that
H.W. $\frac{d}{d t}\langle y\rangle=\frac{\left\langle p_{y}\right\rangle}{m}, \frac{d}{d t}\langle z\rangle=\frac{\left\langle p_{z}\right\rangle}{m}$

Proof of (6.49) $\quad \frac{d}{d t}\langle\mathbf{p}\rangle=-\langle\nabla V\rangle$
Let us calculate the time rate of change of the expectation value of the x-component of the momentum of the particle. We have

$$
\begin{aligned}
\frac{d}{d t}\left\langle p_{x}\right\rangle & =-i \hbar \frac{d}{d t} \int \Psi^{*} \frac{\partial \Psi}{\partial t} d \mathbf{r} \\
& =-i \hbar\left[\int \Psi^{*} \frac{\partial}{\partial x} \frac{\partial \Psi}{\partial t} d \mathbf{r}+\int \frac{\partial \Psi^{*}}{\partial t} \frac{\partial \Psi}{\partial x} d \mathbf{r}\right]
\end{aligned}
$$

by using the Schrödinger equation and its complex conjugate.
$i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi \quad-i \hbar \frac{\partial \Psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi^{*}+V \Psi^{*}$
To replace $\frac{\partial \Psi}{\partial t}$ and $\frac{\partial \Psi^{*}}{\partial t}$, respectively, we get,

$$
\begin{gathered}
\frac{d}{d t}\left\langle p_{x}\right\rangle=-\int \Psi^{*} \frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi\right) d \mathbf{r}+\int\left(-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi^{*}+V \Psi^{*}\right) \frac{\partial \Psi}{\partial x} d \mathbf{r} \\
=\frac{\hbar^{2}}{2 m} \int\left[\Psi^{*}\left(\nabla^{2} \frac{\partial \Psi}{\partial x}\right)-\left(\nabla^{2} \Psi^{*}\right) \frac{\partial \Psi}{\partial x}\right] d \mathbf{r}-\int \Psi^{*}\left[\frac{\partial}{\partial x}(V \Psi)-V \frac{\partial \Psi}{\partial x}\right] d \mathbf{r}
\end{gathered}
$$

Using Green's second identity,

$$
\begin{aligned}
& \text { Green's second identity: If } f \text { and } g \text { are scalar functions of position, then } \\
& \qquad \int_{V}\left[f \nabla^{2} g-g \nabla^{2} f\right] d \mathbf{r}=\int_{S}[f \nabla g-g \nabla f] \cdot d \mathbf{S}
\end{aligned}
$$

where V is the volume bounded by the closed surface S.
The first integral on the right is zero because Ψ and $\frac{\partial \Psi}{\partial t}$ vanish at large distances. The second integral gets simplified as

$$
\begin{aligned}
-\int \Psi *\left[\frac{\partial}{\partial x}(V \Psi)-V \frac{\partial \Psi}{\partial x}\right] d \mathbf{r} & =-\int \Psi * \frac{\partial V}{\partial x} \Psi d \mathbf{r} \\
& =-\left\langle\frac{\partial V}{\partial x}\right\rangle
\end{aligned}
$$

Thus,

$$
\frac{d}{d t}\left\langle p_{x}\right\rangle=-\left\langle\frac{\partial V}{\partial x}\right\rangle
$$

Similarly we can prove that
H.W. $\quad \frac{d}{d t}\left\langle p_{y}\right\rangle=-\left\langle\frac{\partial V}{\partial y}\right\rangle, \frac{d}{d t}\left\langle p_{z}\right\rangle=-\left\langle\frac{\partial V}{\partial z}\right\rangle$

Thus, the proof of Ehrenfest's theorem is complete.

3.10 Exact Statement and Proof of the Position-Momentum Uncertainty Relation

The uncertainty relation defines as, the root-mean-square deviation (also called the standard deviation) from the mean (i.e. the expectation) value.

Considering a wave packet moving along the x direction, we have

$$
\begin{equation*}
\Delta x=\left\langle(x-\langle x\rangle)^{2}\right\rangle^{1 / 2}, \Delta p=\left\langle(p-\langle p\rangle)^{2}\right\rangle^{1 / 2} \tag{3.51}
\end{equation*}
$$

Let us put
and

$$
\left.\begin{array}{l}
A=x-\langle x\rangle \tag{3.52}\\
B=p-\langle p\rangle=i \hbar\left[\frac{d}{d x}-\left\langle\frac{d}{d x}\right\rangle\right]
\end{array}\right\}
$$

Then

$$
\begin{align*}
(\Delta x)^{2}(\Delta p)^{2} & =\int_{-\infty}^{\infty} \Psi * A^{2} \Psi d x \int_{-\infty}^{\infty} \Psi^{*} B^{2} \Psi d x \\
& =\int_{-\infty}^{\infty}\left(A^{*} \Psi^{*}\right)(A \Psi) d x \int_{-\infty}^{\infty}\left(B^{*} \Psi^{*}\right)(B \Psi) d x \tag{3.53}
\end{align*}
$$

The last step follows from the fact that A and B are Hermitian operators, as the relation $\int \Psi^{*} \hat{A} \Psi d \mathbf{r}=\int(\hat{A} \Psi)^{*} \Psi d \mathbf{r}$

It can also be verified directly by partial integration and remembering that Ψ vanishes at infinity.

We shall use the Schwarz inequality

$$
\begin{equation*}
\int|f|^{2} d x \int|g|^{2} d x \geq\left|\int f^{*} g d x\right|^{2} \tag{3.54}
\end{equation*}
$$

where f and g are arbitrary functions and the equality is valid only if $f=\alpha g$, where α is a constant. Taking $f=A \Psi$ and $g=B \Psi$, Equation (3.53) becomes

$$
\begin{equation*}
(\Delta x)^{2}(\Delta p)^{2} \geq\left|\int\left(A^{*} \Psi^{*}\right)(B \Psi) d x\right|^{2}=\left|\int \Psi^{*} A B \Psi d x\right|^{2} \tag{3.55}
\end{equation*}
$$

The expression on the right-hand side can be written as

$$
\begin{gather*}
\left|\int \Psi^{*}\left[\frac{1}{2}(A B-B A)+\frac{1}{2}(A B+B A)\right] \Psi d x\right|^{2} \\
=\frac{1}{4}\left|\int \Psi^{*}(A B-B A) \Psi d x\right|^{2}+\frac{1}{4}\left|\int \Psi^{*}(A B+B A) \Psi d x\right|^{2} \tag{3.56}
\end{gather*}
$$

Here we have omitted the cross terms which can be shown to vanish by using the relation

$$
\begin{aligned}
{\left[\int \Psi^{*} A B \Psi d x\right]^{*} } & =\int \Psi A^{*} B^{*} \Psi^{*} d x \\
& =\int B^{*} \Psi^{*} A \Psi d x \\
& =\int \Psi^{*} B A \Psi d x
\end{aligned}
$$

Now from (3.52)

$$
\begin{aligned}
(A B-B A) \Psi & =-i \hbar\left[x \frac{d \Psi}{d x}-\frac{d}{d x}(x \Psi)\right] \\
& =-i \hbar\left[x \frac{d \Psi}{d x}-\Psi-x \frac{d \Psi}{d x}\right] \\
& =i \hbar \Psi
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\int \Psi^{*}(A B-B A) \Psi d x & =i \hbar \int \Psi^{*} \Psi d x \\
& =i \hbar \tag{3.57}
\end{align*}
$$

as Ψ is normalized.
From (3.55), (3.56) and (3.57) we obtain

$$
\begin{array}{r}
(\Delta x)^{2}(\Delta p)^{2} \geq \hbar^{2} / 4 \\
\Delta x \Delta p \geq \hbar / 2 \tag{3.58}
\end{array}
$$

Equation (3.58) is the exact statement of the position-momentum uncertainty relation, where the uncertainties in x and p are defined as root-mean-square deviations from the expectation values $\langle x\rangle$ and $\langle p\rangle$, respectively.

