3.9 Motion of Wave Packets: Ehrenfest’s Theorem

According to Ehrenfest’s theorem (1927), the equations of motion of the expectation
values of the position and momentum vectors for a wave packet are formally identical to
Newton’s equations of classical mechanics. That is,
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Let us first consider the expectation value of the x-component of the position vector r.

Assuming that the wave function ¥ representing the wave packet is normalized to unity,
we have,

= j ¥ XY dr
The time rate of change of (x) is
i(x) _ 4 P XV dr
dt dt
*
= _[‘P*v—a' + o xWdr
ot

The right-hand side can be transformed by using the Schrodinger equation and its
complex conjugate.
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Let us consider the second part of the integral. Using Green’s first identity



Green’s first identity: If f and g are scalar functions of position, then
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where ¥ is the volume bounded by the closed surface S. For our case, take f = x'/' and
g= ¥

We obtain,
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Since the volume under consideration is the entire space, the surface S in the first integral

on the right is at infinity. Hence, this integral is zero because the wave function vanishes
at large distances. Therefor,
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Using Green’s first identity again, we get
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The surface integral again vanishes. Thus,
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Substituting this back into (3.50), we obtain
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It can be easily shown that
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Similarly, we can prove that
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Let us calculate the time rate of change of the expectation value of the x-component of
the momentum of the particle. We have

4
= - _ih = ‘P*—d
7 il
9 ¥ . [oP* oW
—_in| [wr L gy LI
“U ox or ) Tor o ]

by using the Schrddinger equation and its complex conjugate.
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Using Green’s second identity,

Green’s second identity: If f and g are scalar functions of position, then
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where V7 is the volume bounded by the closed surface S.

The first integral on the right is zero because ¥ and ‘2—‘: vanish at large distances. The
second integral gets simplified as
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Thus,
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Similarly we can prove that
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Thus, the proof of Ehrenfest’s theorem is complete.
3.10 Exact Statement and Proof of the Position-Momentum Uncertainty Relation

The uncertainty relation defines as, the root-mean-square deviation (also called the
standard deviation) from the mean (i.e. the expectation) value.

Considering a wave packet moving along the x direction, we have
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Then
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The last step follows from the fact that A and B are Hermitian operators, as the relation
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It can also be verified directly by partial integration and remembering that ¥ vanishes at
infinity.

We shall use the Schwarz inequality
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where f and g are arbitrary functions and the equality is valid only if f = ag, where a is
a constant. Taking f = AW¥ and g = BY, Equation (3.53) becomes
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The expression on the right-hand side can be written as
U'{!*B(AB _BA)+ %{AB + BA)} wax|
_ iUw*(AB—BA}Wx L l“w*(443+314]1ydx 2 ...(3.56)
4 4

Here we have omitted the cross terms which can be shown to vanish by using the relation
Ul}'* AB‘de]x - _[‘PA* B* W¥ dy

— jB*‘P*A‘F dx

- jl{'* BA Y dx

Now from (3.52)
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as W is normalized.

From (3.55), (3.56) and (3.57) we obtain
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Equation (3.58) is the exact statement of the position-momentum uncertainty relation,

where the uncertainties in x and p are defined as root-mean-square deviations from the
expectation values (x) and (p) ,respectively.



